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Abstract

Being able to recognize and represent individual
objects is a core component of human cogni-
tion. However, current representation learning
approaches in the vision domain rarely represent
scenes as sets of object-centric vectors. These
structured representations could be largely benefi-
cial to, for example, generalization capabilities,
sample efficiency on downstream tasks, and
modeling of object interactions in image gener-
ation and model-based reinforcement learning.
In this work, we propose a method based on
the information-theoretic concept of interaction
information intending to improve performances
and sample efficiency of object-centric models on
the object discovery task. Our approach is derived
by generalizing from 1 to N foreground objects
the objective presented in the Inpainting Error
Maximization [10] framework. Experiments
on Slot Attention [7] over the Tetrominoes
dataset show that our strategy can be effective,
outperforming the baseline both considering
and ignoring the background. The code to
reproduce our experiments is available at https:
//github.com/riccardomajellaro/
IIO-SlotAttention.

1. Introduction
The ability to perceive and decompose entities in complex
visual scenes without supervision, although trivial for a
cognitive being, remains an open challenge for computer
vision. Solving this problem could have a significant impact
on approaches such as reinforcement learning with graph
neural networks [8, 6], or text-to-image generative models.

In recent breakthroughs such as [1, 4, 7], images are first
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decomposed into multiple vectors, each aiming to represent
an object of the scene, then reconstructed back by merg-
ing together the inferred masks and textures of the entities
from their representations. In particular, Slot Attention [7]
is trained end-to-end by simply minimizing the reconstruc-
tion error which, despite being important for pushing the
model to learn informative representations, does not explic-
itly guide each of them towards being related to a single
object. Nevertheless, the Slot Attention mechanism enables
competition between the slots for explaining parts of the
image, allowing the model to reach the desired goal af-
ter an extensive training process. Extensions of this work
[2, 11, 5] achieve better performances through variations in
the training procedure and model architecture.

Other approaches addressing different problems may offer
solutions that, if properly adapted to the context, could help
enhance current unsupervised object-centric representation
learning techniques. We see in [10] an example of this,
where the authors propose to minimize the mutual informa-
tion between foreground and background masks, with the
goal of correctly segmenting an image into two partitions.

In this document, we propose a method that combines and
extends the ideas of [7] and [10], aiming to improve training
times and the quality of object-centric representations. We
employ the Slot Attention architecture and train it using a
combination of the reconstruction loss and a generalized
formulation of the inpainting error maximization objective.

The structure of the document is organized as follows: Sec-
tion 2 introduces the background knowledge required to
understand the topic, Section 3 describes the related work
and Section 4 describes the proposed method. In Section
5 we present the experiments carried out and the obtained
results along with a discussion of these, while Section 6
corresponds to the conclusion.

2. Background
Slot Attention Locatello et al. introduce in [7] the Slot
Attention module, responsible for producing through an iter-
ative attention mechanism a set of K output vectors (slots)
from a set of N input perceptual representations. In the
paper, the latter are defined as feature vectors at the output
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of a CNN backbone augmented with positional embeddings.
The slots are initialized by independently sampling each
from a Gaussian distribution with shared and learnable pa-
rameters µ, σ ∈ RDslots (Dslots is the dimension of a slot),
which allows Slot Attention to generalize the number of
slots at test time. The input feature vectors X ∈ RN×Dinputs

(with Dinputs being the dimension of a feature vector) are
first mapped to dimension D through the learnable linear
transformations k (keys) and v (values). Then, at each of the
T iterations, the slots S ∈ RK×Dslots are refined through a
series steps. First, a dot-product attention between keys and
queries is computed:

Ã =
k(X ) · q(S)T√

D
∈ RN×K , (1)

where q (queries) is a learnable linear transformation map-
ping the slots to dimension D. The attention coefficients are
then normalized (softmax) over the slots (queries), in order
to introduce competition between the slots for explaining
parts of the input:

Ai,j =
exp Ãi,j∑K
l=1 exp Ãi,l

. (2)

It follows an aggregation of the input values for each slot
(called updates) by a convex combination using, as weights,
A normalized over the keys:

U = WT · v(X ) ∈ RK×D , Wi,j =
Ai,j∑N
l=1 Al,j

(3)

Finally, the updates U are fed to a Gated Recurrent Unit
(GRU) followed by a MLP (ReLU as activation function)
with a residual connection. After the T iterations, each of
the K final slots is individually decoded into an image and
a mask. The decoded masks are then normalized across
the slots and used as weights for combining the K decoded
images into the final reconstructed image. The training
objective is the minimization of the reconstruction loss, de-
fined as the mean squared error between the original image
and the reconstructed one.

Inpainting Error Maximization Savarese et al. propose
in [10] a method for unsupervised segmentation by parti-
tioning pixels into two sets, foreground and background.
The approach relies on the information-theoretic concept of
mutual information between two random variables F and
B:

I(F,B) = H(F )−H(F |B) = H(B)−H(B|F ) , (4)

with H(F ) being the entropy of F and H(F |B) the con-
ditional entropy of F given B. When F and B are inde-
pendent, H(F |B) = H(F ) and H(B|F ) = H(B), hence
I(F,B) = 0. Therefore, given an image X ∈ RC×H×W

(C, H and W represent respectively channels, width
and height of the image) the aim is to extract a bi-
nary mask M ∈ {0, 1}H×W and its complementary M
such that I(FM, BM) = 0, where FM = X ⊙M and
BM = X ⊙M are the foreground and background pixel
partitions. A problem with this formulation is the presence
of a trivial solution that minimizes the mutual information
by simply collapsing the two masks, in other words one is
empty (all zeroes) and the other one is full (all ones). To par-
tially avoid this problem, the authors replace the formulation
with a normalized variant of it:

C(FM, BM) =
I(FM, BM)

H(FM)
+
I(BM, FM)

H(BM)

= 2−
(
H(FM|BM)

H(FM)
+
H(BM|FM)

H(BM)

)
. (5)

The entropy H(FM) is defined as the “entry-wise” matrix
L1 norm i.e., in this case, equal to the number of pixels
considered by the binary mask. The conditional entropy is
instead represented as

H(FM|BM) = ||FM −M⊙ ψK(BM,M)||1
= ||M⊙ (X − ψK(X ⊙M,M)||1, (6)

with ψK being the inpainting module. Precisely,

ψK(X,M) =
K ∗X
K ∗M

, (7)

where ∗ indicates the convolution operator and K is a Gaus-
sian filter defined as

Ki,j ∝
1

2πσ2
exp

(
− i

2 + j2

2σ2

)
. (8)

K is additionally normalized so that its elements sum up
to one. In practice, before summing up the absolute differ-
ences in 6, an average over the channels is taken, leaving
a mean absolute distance term per pixel. For this reason,
each conditional entropy ranges from 0, when the inpainting
perfectly corresponds to the original image in the considered
mask area, to H(FM) = ||M||1, in the case of maximum
inpainting error. The search for a binary mask M can finally
be defined by the following objective function:

max
M∈{0,1}H×W

||M⊙ (X − ψK(X ⊙M,M))||1
||M||1

+
||M⊙ (X − ψK(X ⊙M,M))||1

||M||1
. (9)

3. Related Work
Object-centric representation learning is recently arous-
ing interest among Computer vision and deep learning re-
searchers. As a result, proposals bringing precious improve-
ments in the field are rising in number and heterogene-
ity of ideas. Different unsupervised approaches, including
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[3, 4, 1, 7], perform object discovery by decomposing input
scenes into multiple latent variables, each representing a
single object. Within these proposals, Slot Attention [7]
emerges for being faster to train and more memory efficient
while matching or even outperforming the other methods.
More recent techniques obtain SOTA performances by ex-
tending Slot Attention in various ways. In [2] an implicit
differentiation is introduced to avoid differentiating through
the unrolled refinement process, while Singh et al. [11]
experiment with a transformer-based variant of the Slot At-
tention architecture. The work presented in [5], instead,
replaces the initial random slots with learned ones and ap-
plies a bi-level optimization strategy. In a different line of
work, approaches based on information-theoretic concepts
attempt to tackle the task of unsupervised segmentation. For
instance, [10, 12, 13] minimize mutual information to par-
tition image pixels in background and foreground sets. In
[12], the authors train an inpainter to reconstruct a masked
flow adversarially with a generator that produces masks
with the aim of leading the inpainter to mispredict the origi-
nal optical flow. In [10], instead, the inpainter is fixed and
thus no training is required. Here, the discrete foreground
mask is iteratively optimized to share as little information
as possible (mutual information minimization), resulting in
a more accurate segmentation. Our contribution is to extend
the loss formulation provided by [10] to work with multiple
masks, and minimize it in combination with the reconstruc-
tion loss to train Slot Attention. In some cases, this strategy
can efficiently push Slot Attention to infer masks that better
separate information and overcome some of its limitations.

4. Methods
4.1. Interaction Information Optimization

When dealing with multiple objects (two or more excluding
the background), two masks are no longer sufficient and
minimizing equations 4 or 5 loses significance. The gener-
alization to n variables of the mutual information (eq. 4) is
the interaction information, defined as follows:

I(Z1, ..., Zn) = I(Z1, ..., Zn−1)− I(Z1, ..., Zn−1|Zn) ,
(10)

where

I(Z1, ..., Zn−1|Zn) = I(Z1, ..., Zn−2|Zn)

− I(Z1, ..., Zn−2|Zn−1, Zn) (11)

is the conditional interaction information, as reported in 1.15
of [9]. We consider the interaction information conditioned
by more than one variable as

I(Z1, ..., Zn−i|Zn−i+1, ..., Zn) =

I(Z1, ..., Zn−i−1|Zn−i+1, ..., Zn)

− I(Z1, ..., Zn−i−1|Zn−i, Zn−i+1, ..., Zn) , (12)

which corresponds to 11 in the case i = 1. Additionally, as
proved in Appendix A, I(Z1, Z2|Z3, ..., Zn) can be repre-
sented in terms of conditional entropy as

I(Z1, Z2|Z3, ..., Zn) = H(Z1|Z3, ..., Zn)

−H(Z1|Z2, Z3, ..., Zn) , (13)

which, when n = 3, corresponds to the def-
inition of conditional mutual information
I(Z1, Z2|Z3) = H(Z1|Z3)−H(Z1|Z2, Z3). This,
along with equations 12 and 4, allows us to define equation
10 in terms of entropy and conditional entropy. For instance,
with n = 4, the expansion is:

I(Z1, Z2, Z3, Z4) = H(Z1)−H(Z1|Z2, Z3, Z4)

−H(Z1|Z2)−H(Z1|Z3)−H(Z1|Z4)

+H(Z1|Z2, Z3) +H(Z1|Z2, Z4) +H(Z1|Z3, Z4) .

Note that all the terms are written with respect to
the first variable, Z1 in this case, therefore we refer
to this formulation as “I centered on Z1”. Consider
now an image X ∈ RC×H×W and a function ϕθ,
parametrized by θ, that maps X to a set of K nor-
malized continuous masks M = ϕθ(X), with each
mask mi ∈ M for i = 1, ...,K being in [0, 1]H×W .
By modeling H(X ⊙m1|X ⊙m2, .., X ⊙mK) as
H(X ⊙m1|X ⊙

∑K
i=2mi), it is possible to compute the

conditional entropy on the right side of equation 13 as in 6,
thus

||m1 ⊙ (X − ψK(X ⊙
K∑
i=2

mi,

K∑
i=2

mi)||1 .

The entropy H(X ⊙m1) is again modeled as ||m1||1. In
this way, we can finally compute the interaction information
I(X ⊙ m1, ..., X ⊙ mK) between K masks of an image
X , which is composed of 2K−1 (conditional) entropy terms,
half of them with positive sign and half with negative sign,
each ranging from 0 to H(X ⊙m1) = ||m1||1. Our goal is
now to maximize the inpainting error (conditional entropy)
terms in I , leading in the optimal case to 2K−2 positive
terms and 2K−2 negative terms of magnitude ||m1||1, and
therefore to I = 0. In Appendix B we present more details
regarding the expansion of I . Moreover, we empirically
found out that the optimization of K interaction informa-
tion terms, each centered on one of the K variables and
normalized by the entropy of that variable, is a more robust
objective than the optimization of a single I term. The loss
is finally formulated as follows:

L(θ;X) = −
∑

m∈M

|M|−1∑
i=1

∑
C∈

Ci(M\m)

H

(
X ⊙m|X ⊙

∑
c∈C

c

)
||m||1

,

(14)
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where Ci(M) represents the set of combinations of i ele-
ment from set M (without repetitions). In our experiments,
we employ Slot Attention for mapping images to masks,
and we optimize its parameters by minimizing the loss L.

4.2. Training procedure

Since our loss does not take the reconstruction quality into
account, optimizing that alone would not ensure that the
learned representations contain information about the tex-
tures of the objects. Moreover, when different objects share
the same or very similar colors, our loss function tends
to group them in a single slot, while when a single object
includes very different colors it gets easily divided into sep-
arate slots. For these reasons, it is crucial to optimize both
reconstruction and interaction information. However, we
experimented that a simple weighted sum of the two loss
terms leads to highly unstable training. Thus, our strategy
consists of, first, pre-training Slot Attention by minimizing
only the reconstruction loss until the objects are decoded
with correct textures and reasonably separated amongst the
slots. There is no need to reach a perfect segmentation dur-
ing this phase; what we aim for is that every single slot has
its own object to pay attention to. After the pre-training,
we fine-tune the model by optimizing the interaction in-
formation for a small number of epochs, which is usually
sufficient to reach a near-optimal segmentation. In order to
avoid that the optimization of the interaction information
degrades the results obtained by the first phase, during the
fine-tuning we introduce a hinge term beside our loss, which
makes sure that the reconstruction error remains lower than
a fixed margin. Specifically, when the reconstruction loss
is lower than a threshold, its value is set to zero and only
the inpainting error is considered, while when it is larger its
value is scaled up to match the order of the other loss term.
The scaling factor is important since the reconstruction loss
is usually different orders of magnitude smaller with respect
to our loss, and a good balance between the functions to be
optimized is necessary.

5. Experiments
5.1. Experimental Setup

ARI score The adjusted rand index (ARI) score is an
evaluation metric used to measure the similarity between
two clusters, and it is defined as:

ARI =
∑

ij (
nij
2 )−

[∑
i (

ai
2 )

∑
i (

bj
2 )

]
/
∑

i (
n
2)

1
2

[∑
i (

ai
2 )+

∑
i (

bj
2 )

]
−
[∑

i (
ai
2 )

∑
i (

bj
2 )

]
/
∑

i (
n
2)
.

Consider a set of n elements and two clusters of these,
namely the ground truth one Y = {Y1, ..., Yr} and the pre-
dicted one X = {X1, ..., Xs}. Let nij be the number of
elements in common between Xi and Yj , ai the sum of

all nij for a fixed i, and bj is the sum of all nij for a
fixed j. The term

∑
ij

(
nij

2

)
is the rand index (RI) and

measures the ratio between the number of correctly clus-
tered elements and the total number of pairs. The term[∑

i

(
ai

2

)∑
i

(
bj
2

)]
/
∑

i

(
n
2

)
is the expected RI and is in-

troduced to have a more precise measure of the similarity
between two clusters. In fact, the plain RI can assume real
values between 0 and 1 (the closer is the RI to 1 the more
similar the two clusters are), while ARI can assume values
between -0.5 and 1. An ARI value of 1 represents a perfect
clustering and, as it tends to 0, it gets closer to mirroring
a random one. A negative ARI indicates, instead, a worse
than random performance. This metric is the one used in [7]
to compute the similarity between the ground truth masks
and the predicted ones. In their experiments, the authors of
the above-mentioned paper did not consider the background
in the ARI score computation, while in the next sections,
we present our results both including and excluding it.

Datasets We investigated the effect of the interaction in-
formation optimization on Slot Attention using one of the
three datasets considered in the original Slot Attention pa-
per. The dataset is named Tetrominoes and is composed
of 35× 35 images, each containing three Tetris-like shapes
(sampled from 17 unique shapes and orientations and six
possible colors) on a black background. We trained over
60K samples and evaluated over 1K. The dataset is avail-
able at https://github.com/deepmind/multi_
object_datasets.

Experiments design We pre-trained Slot Attention (fol-
lowing the hyperparameters configurations suggested in [7])
for 50 epochs on Tetrominoes. At this point, we fine-tuned
the model for 5 epochs by optimizing the interaction infor-
mation to infer more precise object borders and confine the
information related to the background in a single mask (in
the case of Tetrominoes). For our experiments, the hinge
margin was set to 4×−4. The scaling factor of the hinge
loss was set to 103 in order to increase the importance of
the reconstruction error when over the threshold.

Baseline We compared our method with the plain Slot
attention trained for 55 and 200 epochs on Tetrominoes. It
is relevant to highlight that in [7], Slot Attention has been
trained for longer, however since the main purpose of this
work is to make Slot Attention’s training more efficient,
we considered comparing our method with Slot Attention
trained for the same number of epochs (55) and for 200
epochs.

5.2. Quantitative Results

Tetrominoes As observable from Table 1, if we do not
consider the background, Slot Attention can predict close-

https://github.com/deepmind/multi_object_datasets
https://github.com/deepmind/multi_object_datasets


Interaction Information Optimization for Object-Centric Representation Learning

ARI score on Tetrominoes
Experiment w/background no/background

SA (55) 47.40± 1.00 96.00± 0.34
SA (200) 46.38± 0.79 98.56 ± 0.32

SA (50) + IIO (5) 96.53 ± 0.41 97.77± 0.31

Table 1. ARI score obtained on Tetrominoes both considering and
not considering the background. The first row reports Slot Atten-
tion after 55 epochs of training, while the second row presents
Slot Attention after 200 epochs. The third row shows Slot At-
tention pre-trained for 50 epochs and fine-tuned with the inter-
action information for 5 epochs. Since the slots are initialized
randomly and specialized iteratively, the results (reported in the
format: mean± std) are averaged over 5 repetitions.

to-perfect object segmentations already after 55 training
epochs. When considering the background, instead, we find
that the results are fairly poor. At 200 epochs, the score for
the foreground objects slightly improves as the model learns
to infer more precise borders around the entities, but gets
even worse at partitioning the background. These results are
supported by the fact that, as mentioned in [7], Slot Atten-
tion tends on average to spread the background information
uniformly among the slots instead of confining it in a single
one, especially on datasets where the background texture
is fixed for all the samples. The authors state that this phe-
nomenon does not affect foreground object segmentation
and, although it is ulteriorly confirmed in our experiments, it
still limits the quality of the representations. This behavior
could reduce the benefits of employing object-centric repre-
sentations in approaches such as model-based reinforcement
learning. By focusing on our method results, we can observe
that with only 5 fine-tuning epochs of a model pre-trained
for 50, the foreground score is higher than the one achieved
by Slot Attention after 55 epochs, and gets very close to the
one obtained by training for almost four times longer (200
epochs). When taking the background into account, our
method drastically outperforms both baselines. For this rea-
son, the proposed method is particularly suited for situations
where sample efficiency is crucial and an inaccurate repre-
sentation of static objects, such as a fixed-color background,
could have a large negative impact. These results are visu-
alized and further interpreted with the help of qualitative
examples in the next section.

5.3. Qualitative Results

Tetrominoes Figures 1, 2, and 3 show the qualitative re-
sults by displaying both the ground truth and the inferred
masks. Coherently with the quantitative results, we can
observe that the masks produced by Slot Attention after 200
training epochs are able to perfectly segment the objects,
but not to recognize the background as a separate entity
(presumably because it is static in this dataset). In fact,

SA + IIO

SA

Figure 1. Comparison between the masks produced by Slot Atten-
tion on Tetrominoes with and without our interaction information
optimization. The first row reports the ground truth masks, the sec-
ond row SA pre-trained for 50 epochs and fine-tuned with IIO for
5 epochs, while the third row SA trained for 200 epochs without
IIO fine-tuning.

the model incorrectly learned to distribute the background
area across all the masks. On the other hand, with our
method, in just 55 epochs we obtain almost perfect masks
for all the entities, background included. In a few cases
such as Figure 3, a mask can contain small imperfections,
justifying the slightly lower performances compared to Slot
Attention trained for 200 epochs. Additional training, either
pre-training or fine-tuning, can mitigate these minor defects.

6. Conclusion
In this work, we presented a generalized formulation of the
inpainting error maximization (IEM) framework on more
than two masks and combined it with Slot Attention. This
strategy aims at enhancing training efficiency and object de-
composition capabilities without degrading the information
content obtained through the minimization of the reconstruc-
tion error. The experimental results showed the effective-
ness of our method on Tetrominoes, where augmenting Slot
Attention with our interaction information based objective
led to improved data efficiency and significant gains over
the baseline when considering the background. However,
conducting additional experiments on different datasets is
required to gain a deeper understanding of the possible limi-
tations and advantages of the method we proposed.
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Appendix

A. Mutual information conditioned on multiple variables
We show here that I(Z1, Z2|Z3, . . . , Zn) = H(Z1|Z3, . . . , Zn)−H(Z1|Z2, Z3, . . . , Zn), where Z1, . . . , Zn are continu-
ous random variables with support sets Z1, . . . ,Zn.

I(Z1, Z2|Z3, . . . , Zn) =∫
· · ·

∫
Zn ... Z3

p(z3, . . . , zn)

∫
Z2

∫
Z1

p(z1, z2|z3, . . . , zn) log
p(z1, z2|z3, . . . , zn)

p(z1|z3, . . . , zn)p(z2|z3, . . . , zn)
dz1dz2

 dz3 . . . dzn =

∫
· · ·

∫
Zn ... Z3

p(z3, . . . , zn)

∫
Z2

∫
Z1

p(z1, z2|z3, . . . , zn) log
p(z1, z2|z3, . . . , zn)
p(z2|z3, . . . , zn)

dz1dz2

 dz3 . . . dzn −

∫
· · ·

∫
Zn ... Z3

p(z3, . . . , zn)

∫
Z2

∫
Z1

p(z1, z2|z3, . . . , zn) log p(z1|z3, . . . , zn) dz1dz2

 dz3 . . . dzn .

Since p(z1, z2|z3, . . . , zn) =
p(z1, z2, z3, . . . , zn)

p(z3, . . . , zn)
=
p(z1|z2, z3, . . . , zn)p(z2|z3, . . . , zn)p(z3, . . . , zn)

p(z3, . . . , zn)
=

p(z1|z2, z3, . . . , zn)p(z2|z3, . . . , zn) , then I(Z1, Z2|Z3, . . . , Zn) =∫
· · ·

∫
Zn ... Z3

p(z3, . . . , zn)

∫
Z2

p(z2|z3, . . . , zn)
∫
Z1

p(z1|z2, z3, . . . , zn) log p(z1|z2, z3, . . . , zn) dz1dz2

 dz3 . . . dzn −

∫
· · ·

∫
Zn ... Z3

p(z3, . . . , zn)

∫
Z2

∫
Z1

p(z1, z2|z3, . . . , zn) log p(z1|z3, . . . , zn) dz1dz2

 dz3 . . . dzn =

∫
· · ·

∫
Zn ... Z3

∫
Z2

p(z2, z3, . . . , zn)

∫
Z1

p(z1|z2, z3, . . . , zn) log p(z1|z2, z3, . . . , zn) dz1

 dz2dz3 . . . dzn −

∫
· · ·

∫
Zn ... Z3

p(z3, . . . , zn)

∫
Z2

∫
Z1

p(z1, z2|z3, . . . , zn) log p(z1|z3, . . . , zn) dz1dz2

 dz3 . . . dzn .

By switching the order of integration in the double integral of the last term, and by knowing that

p(z1, |z3, . . . , zn) =
∫
Z2

p(z1, z2|z3, . . . , zn) dz2 (marginalization), then: I(Z1, Z2|Z3, . . . , Zn) =

∫
· · ·

∫
Zn ... Z2

p(z2, . . . , zn)

∫
Z1

p(z1|z2, . . . , zn) log p(z1|z2, . . . , zn) dz1

 dz2 . . . dzn −

∫
· · ·

∫
Zn ... Z3

p(z3, . . . , zn)

∫
Z1

p(z1|z3, . . . , zn) log p(z1|z3, . . . , zn) dz1

 dz3 . . . dzn .

Given that, by definition,

H(Z1|Z3, . . . , Zn) = −
∫

· · ·
∫

Zn ... Z3

p(z3, . . . , zn)

∫
Z1

p(z1|z3, . . . , zn) log p(z1|z3, . . . , zn) dz1

 dz3 . . . dzn

and H(Z1|Z2, Z3, . . . , Zn) =

−
∫

· · ·
∫

Zn ... Z2

p(z2, . . . , zn)

∫
Z1

p(z1|z2, . . . , zn) log p(z1|z2, . . . , zn) dz1

 dz2 . . . dzn ,

then we finally obtain that I(Z1, Z2|Z3, . . . , Zn) = H(Z1|Z3, . . . , Zn)−H(Z1|Z2, Z3, . . . , Zn).
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B. Expansion of I(Z1, ..., Zn)

We show here the expansion of I(Z1, ..., Zn), centered on Z1, by using equations 10, 12, 13 and 4.

t = 0 I(Z1, ..., Zn) =

t = 1 I(Z1, ..., Zn−1)− I(Z1, ..., Zn−1|Zn) =

t = 2 I(Z1, ..., Zn−2)− I(Z1, ..., Zn−2|Zn−1)− I(Z1, ..., Zn−2|Zn) + I(Z1, ..., Zn−2|Zn−1, Zn) =

...
...

...
...

t = n-2 I(Z1, Z2)− I(Z1, Z2|Z3)− I(Z1, Z2|Z4) + I(Z1, Z2|Z3, Z4)− I(Z1, Z2|Z5) + I(Z1, Z2|Z3, Z5)

+ I(Z1, Z2|Z4, Z5)− I(Z1, Z2|Z3, Z4, Z5) · · ·
t = n-1 H(Z1)−H(Z1|Z2)−H(Z1|Z3) +H(Z1|Z2, Z3)−H(Z1|Z4) +H(Z1|Z2, Z4) +H(Z1|Z3, Z4)

−H(Z1|Z2, Z3, Z4)−H(Z1|Z5) +H(Z1|Z2, Z5) +H(Z1|Z3, Z5)−H(Z1|Z2, Z3, Z5)

+H(Z1|Z4, Z5)−H(Z1|Z2, Z4, Z5)−H(Z1|Z3, Z4, Z5) +H(Z1|Z2, Z3, Z4, Z5) · · ·

At each step t every term in the previous step is expanded in two terms, as equations 10, 12, 13 and 4 all have one positive
and one negative term on the right side. The number of terms at step t follows therefore the expression 2t, and since the
expansion stops at t = n− 1, the total number of terms in I(Z1, ..., Zn) is 2n−1, half of which positives (i.e. 2n−2) and
half negatives. Note that at the last step all the terms are entropy and conditional entropy functions, each with respect to
(centered on) Z1. Moreover, as conditional variables inside these conditional entropy terms, we find all the combinations
(without repetitions) of variables in the set {Z2, ..., Zn}, considering combinations of size from 1 to n− 1.


